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Abstract— The appeal of adaptive control to the
aerospace domain should be attributed to the neural net-
work models adopted in online adaptive systems for their
ability to cope with the demands of a changing environ-
ment. However, continual changes induce uncertainty
that limits the applicability of conventional validation
techniques to assure the reliable performance of such sys-
tems. In this paper, we present several advanced meth-
ods proposed for verification and validation (V&V) of
adaptive control systems, including Lyapunov analysis,
statistical inference, and comparison to the well-known
Kalman filters. We also discuss two monitoring tools for
two types of neural networks employed in the NASA F-15
flight control system as adaptive learners: the confidence
tool for the outputs of a Sigma-Pi network, and the va-
lidity index for the output of a Dynamic Cell Structure
(DCS) network.

TABLE OF CONTENTS

1 Introduction

2 Neural Network based Flight Control

3 Issues in V&V and Certification

4 Analysis for V&V

5 Advanced Testing and Monitoring Tools

6 Conclusions

1. INTRODUCTION

Adaptive control systems in aerospace applications have
numerous advantages. Due to their capability to adapt
their internal behavior according to the current aircraft
dynamics, they can automatically fine-tune system iden-
tification and accommodate for slow degradation and
catastrophic failures (e.g., a damaged wing or a stuck
rudder) alike. A variety of approaches for adaptive
controls, based upon self-learning computational models
such as neural networks and fuzzy logic, have been de-
veloped (e.g., [19], [21]). Some are in actual use (e.g., in
chemical industry) or have been tested (e.g., the NASA
Intelligent Flight Control System (IFCS)). However, the
acceptance of adaptive controllers in aircraft and oth-
er safety-critical domains is significantly challenged by
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the fact that methods and tools for analysis and ver-
ification of such systems are still in their infancy and
no widely accepted V&V approach has been developed.
Furthermore, the validation of the neural network mod-
els is particularly challenging due to their complexity
and nonlinearity. Reliability of learning, performance of
convergence and prediction is hard to guarantee. The
analysis of traditional controllers, which have been aug-
mented by adaptive components require technically deep
nonlinear analysis methods.

In this paper, the major characteristics of adaptive con-
trol systems and the impact on V&V of such systems are
discussed with a specific focus on mathematical analysis,
comparison to the well-known Kalman filters, and run-
time monitoring. An overview of two monitoring tools
for two types of neural networks employed in an adap-
tive flight controller is presented: the confidence tool for
the outputs of a Sigma-Pi network, and the validity in-
dex for the output of a Dynamic Cell Structure (DCS)
network. Both tools provide statistical inference of the
neural network predictions and can give an estimate of
the current performance of the network. It should be
noted that our tools only provide a performance mea-
sure for the network behavior, but not automatically for
the entire controller.

2. NEURAL NETWORK BASED FLIGHT
CONTROL

The approaches introduced in this paper are experiment-
ed with the NASA F-15 Intelligent Flight Control Sys-
tem (IFCS) project. The goal of IFCS project is to de-
velop and test-fly a neuro-adaptive intelligent flight con-
trol system for a manned F-15 aircraft. Two principal
architectures have been developed: the Gen-I architec-
ture uses a DCS neural network as its online adaptive
component, the Gen-II architecture a Sigma Pi network.

Figure 1 shows the basic architecture of the Gen-I and
Gen-II controllers: pilot stick commands θcmd are mixed
with the current sensor readings θ (e.g., airspeed, angle
of attack, altitude) to form the desired behavior of the
aircraft. From these data, the PD controller calculates
the necessary movements of the control surfaces (e.g.,
rudder, ailerons) and commands the actuators. The con-
troller incorporates a model of the aircraft dynamics. If
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Figure 1. IFCS Generic Adaptive Control Architecture

the aerodynamics of the aircraft changes radically (e.g.,
due to a damaged wing or a stuck rudder), there is a
deviation between desired and actual state. The neu-
ral network is trained during operation to minimize this
deviation. Whereas in the Gen-I architecture, the ap-
propriate control derivatives are modified with a neural
network, Gen-II uses a dynamic inverse controller with
control augmentation, i.e., the neural network produces
a control correction signal Uad. For details on the control
architecture see [21], [5], [22].

The Neural Networks

Dynamic Cell Structure (DCS) Network—The DCS network
is derived as a dynamically growing structure in order to
achieve better adaptability. DCS can be seen as a special
case of Self-Organizing Map (SOM) structures as intro-
duced by Kohonen [12] and further improved to offer
topology-preserving adaptive learning capabilities that
can respond and learn to abstract from a much wider
variety of complex data manifolds [18], [4]. In the IFCS
Gen-I controller, the DCS provides derivative corrections
during system operation.

The training algorithm of the DCS network combines
the competitive Hebbian learning rule and the Kohonen
learning rule. The Hebbian learning rule is used to ad-
just the connection strength Cij between two neurons.
The Kohonen learning rule is used to adjust the weight
representations of the neurons ( ~wi), which are activated
based on the best-matching methods during the learn-
ing. If needed, new neurons are inserted. After learning,
when DCS is used for prediction (recall mode), it will re-
call parameter values at any chosen dimension. It should
be noted that the computation of an output is different
from that during training. When DCS is in recall mode,
the output is computed based on two neurons for a par-
ticular input. One is the best matching unit (bmu) of
the input; the other is the closest neighbor (when ex-
isting) of the bmu other than the second best matching
unit of the input. Since our performance estimation does
not depend on the specific learning algorithm, it will not
be discussed in this paper. For details on DCS and the
learning algorithm see [18], [4], [6], [15].

Sigma Pi Neural Network—The IFCS Gen-II controller us-
es a Sigma-Pi (ΣΠ) neural network [20], where the inputs
are x subjected to arbitrary basis functions (e.g., square,

scaling, logistic function). The output of the network o
is a weighted sum (Σ) of the Cartesian product of the
basis function values (Figure 2):

o =
∑

i

wibi where bi =
∏
j

β(xj)

with weights wi and basis functions β(xj). Online adap-
tation (learning) is taking place while the adaptive con-
troller is operating. Figure 3 shows the development of
the 60 weights over time. A simulated failure occurs at
t = 1.5s.

Figure 2. Architecture of ΣΠ network.
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Figure 3. Development of the NN weights over time during
adaptation. The failure occurred at t = 1.5s.

3. ISSUES IN V&V AND CERTIFICATION OF
ADAPTIVE SYSTEMS

Clearly, an adaptive aircraft controller is a highly safety-
critical component of aviation software. Therefore, it
has to undergo a rigorous verification, validation, and
certification process before such a controller can be de-
ployed. For civil aviation, the standard DO-178B pre-
scribes the process for certification; other institutions,
like the NASA, have their own set of standards. In all
cases, the certification process has to make sure that the
piece of software (as a part of the overall system) per-
forms safely and does not produce any risks. Extended
testing and detailed documentation of the entire soft-
ware development process are key ingredients of each
certification process, making certification a costly and
highly time-consuming process. Also, certification au-
thorities are very reluctant to certify novel components,
architectures, and software algorithms. In particular, for
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advanced adaptive control algorithms, no standardized
way of performing performance analysis and V&V exists.
In the following, major characteristics of neuro-adaptive
control algorithms and their implication on analysis and
verification are discussed.

In essence, the adaptive component (neural network) can
be seen as a multivariate function (or look-up table) with
non-constant table entries. The learning algorithm itself
is a variant of a multivariate (quadratic) optimization
procedure. The goal of the adaptation is to minimize
the error e between the actual and desired behavior of
the aircraft. In the case of the IFCS, the error (for each
axis) is defined as the actual error and the error of the
derivatives.

e =
(

θ̇ − θ̇cmd

θ − θcmd

)
The learning algorithm tries to adapt the weights W
(i.e., wi for ΣΠ, Cij and ~wi for DCS) the network in
such a way that the error e becomes minimal. Such
an algorithm, embedded in a (traditional) PD or PID
controller poses some important issues with respect to
V&V, which will be discussed in the following.

• One of the most important performance criteria of a
controller is it’s stability and robustness (i.e., stability
in the presence of perturbation or damage). For the
practical analysis of an aircraft controller, a large body
of linear analysis methods and tools exist (e.g., [24]).
However, modeling of damage as well as the adaptive
component results in a nonlinear system, making the use
of linear analysis methods in general impossible. A well-
known non-linear analysis technique, Lyapunov stability,
will be discussed below.
• Multivariate optimization algorithms have two un-
pleasant characteristics: they are not guaranteed to
reach the global minimum (it can only be proven that
they reach a local minimum), and it may take an arbi-
trary amount of time for the algorithm to converge to
that optimum. Both are highly undesirable in a safety-
critical real-time system. Next section presents tools
which can dynamically analyze the quality of the cur-
rent solution at any time during the learning process.
Such tools can help to provide important performance
estimates even in the absence of hard limits.
• Often, adaptive components like neural networks are
considered to be non-deterministic systems. Except for
cases, where initial weights are set to random values
(which is not the case in our neural networks), adap-
tive controllers are fully deterministic. However, the cur-
rent system status always depends on the entire history,
not just the previous state of the aircraft (as holds for
Markov processes). Thus, different techniques for anal-
ysis and verification are needed.
• Technology available for analysis and monitoring only
deals with the adaptive neural network, but not neces-
sarily with the entire system. For the assessment of the

performance of an aircraft, its handling qualities (e.g.,
measured using the Cooper-Harper rating [10], [25]) is
highly important. Software certification has to answer
the question of how the dynamic adaptation such as
failure accommodation influences the aircraft handling
qualities. Guarantees must be provided such that a cer-
tain level of handling quality is always available.

4. ANALYSIS FOR V&V
As a prominent example of nonlinear analysis techniques
useful for adaptive control, Lyapunov analysis (control
theory) provides results on the stability of the controller
and Extended Kalman Filters (EKF, a statistical filter
often used for GN&C applications) for the analysis of the
neural network. Both analysis methods provide actual
NN learning algorithms.

Lyapunov Analysis

Stability of a control system is of particular importance
for the safe operation of an aircraft. In a nutshell, stabil-
ity means that every bounded input produces a bound-
ed output. For linear control systems, various meth-
ods for stability analysis are available, e.g., the Routh
Hurwitz criterion, the root-locus method, or Nyquist’s
method. Damage-adaptive control systems, however, are
nonlinear, so these analysis techniques cannot be used.
One of the most popular methods for stability analysis
of nonlinear controllers is the Lyapunov stability anal-
ysis. Here, an energy-like function over time L (Lya-
punov candidate) must be found, which exhibits specific
properties with regard to L and L̇. If such a Lyapunov
function can be constructed it can be shown that the sys-
tem is stable when the time reaches infinity (asymptotic
stability).

For V&V purposes, this method has a number of advan-
tages: if the Lyapunov function is defined with respect to
the adaptive parameters (in our case, the neural network
weights W), then a learning rule can be extracted eas-
ily. More specifically, for the IFCS, a typical Lyapunov
candidate function has the form ([21])

L(e,W̃) =
1
2
eT Pe +

1
2γ

W̃T W̃

with a parameter (learning rate)γ > 0 and a matrix
P. For the system to be asymptotically stable, L > 0
and L̇ < 0 must hold. After some calculations (see [21]
for details), an equation for the updates of the weights
Ẇ can be obtained: Ẇ = −γsβ(x), where β are the
network basis functions,

s =
1

2KP
θ̃ +

1 + KP

2KP KD

˙̃
θ

where KP and KD is the proportional and derivative
gain, respectively. It is easy to see that this update equa-
tion can be seen as a discrete gradient descent learning
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method of the form Wt+1 = Wt − η∇ with gradient ∇.
Results of this analysis exhibit some restrictions:

• only asymptotic stability is guaranteed, i.e., this anal-
ysis does not cover issues of convergence speed,
• the detailed analysis in [21] shows that stability is only
guaranteed within certain error bounds, and
• this analysis method does not cover performance-
oriented aspects (like gain and phase margins, or system-
wide properties like aircraft handling quality).

Thus, an analytical method like Lyapunov’s stability
analysis is an important V&V step, but additional tech-
niques need to be applied during V&V of adaptive con-
trollers.

Extended Kalman Filters—Whereas the application of neu-
ral networks and their learning algorithms in safety criti-
cal applications is relatively new, another, strongly relat-
ed technology has been around for a long time: Kalman
filters. A Kalman Filter is a recursive linear least squares
optimization algorithm (for linear systems). Given a
model of the process dynamics and (noisy) measure-
ments, a Kalman Filter (KF) can calculate the stati-
cally best possible estimation of the state. Tradition-
ally, KFs are used for navigation, where a number of
measurements (from different sensors like GPS, compass,
odometer) are combined to a position fix. Developed in
the early 1960’s, KFs are nowadays part of every air-
craft navigation system, spacecraft GN&C, and every
GPS receiver. Numerous extensions have been made,
and there exists a solid body of engineering knowledge
on how to design, V&V and certify a Kalman Filter. For
an overview of Kalman Filters see e.g., [3].

The intimate relationship between Kalman Filters and
Neural Network training algorithms comes with a
Bayesian view of the matter [2]. Following discussion
will show that a powerful neural network learning algo-
rithm can be expressed in terms of the well-established
Kalman Filter technology. Although this approach is
not new and has been used for various applications (e.g.,
[26], [13], [11]) its application to adaptive flight control
provides two major benefits:

• the KF learning algorithm automatically provides a
dynamic quality-of-learning measure to indicate, how the
learning is progressing. These quality metrics are dis-
cussed in conjunction with the monitoring tools in fol-
lowing sections.
• theory and engineering knowledge and experience on
KFs are available, so all available techniques for analy-
sis, V&V, and certification can be used “as is”; no new
algorithms and paradigms have to be introduced.

On the down-side, however, the KF-based learning algo-
rithm has somewhat higher computational requirements
than a simple learning algorithm like gradient descent.

One of the major characteristics of the NN architec-
tures used for adaptive control their nonlinear behavior,
caused, e.g., in the ΣΠ network by nonlinear basis func-
tions and the Cartesian product. Therefore, the stan-
dard KF, which is for linear systems, cannot be used. Ex-
tended Kalman Filters (EKF), however, can be used to
estimate nonlinear processes. Here, essentially, a piece-
wise linearization around the current state estimate is
used (for details see [3]).

For the purpose of this study, EKF is not adopted to es-
timate the state of the aircraft or the output of the NN.
Instead, it is used to estimate all the adjustable param-
eters W of the neural network. The network weights W
are thus defined as the state vector (usually called x).
This is a major difference to traditional state estimation
problems, where the actual physical state (e.g., angle
of attack, velocity) are estimated. Our learning task is
now to estimate a set of weights Ŵ in such a way that it
minimizes the network output h(W,x) and the required
output z. Thus, process and measurement model (in the
discrete form) is given by

Wt+1 = Wt + ηt

zt = h(Wt,xt) + νt

where h(Wt,xt) is the output of the network at time
t and ηt and νt are (Gaussian distributed) process and
observation noise vectors, respectively. The Extended
Kalman Filter algorithm then is defined in the usual way
([3], [11]) with recursive temporal and measurement up-
date equations

P−
t = P+

t−1 + Qt

Kt = P−
t HT

t (Rt + (Ht)P−
t HT

t )−1

P+
t = P−

t (I −KtHT
t )

Ŵt = Ŵt−1 + Kt(zt − h(Wt−1,xt))

where H is the Jacobian of the output with respect to
the weights ( ∂oi

∂wj
), and Q and R the observation and

process covariance matrix, respectively. The matrix Kt

is called the Kalman gain, indicating how much the new
training data influence the weights Ŵt. In the case of
the IFCS ΣΠ architecture, zt is not directly available.
Hence, the filter is formulated using the control error
e. Figure 4 shows the development of the Kalman filter
gains K over time for a simulation scenario similar to
that of Figure 3.

During each iteration, a new estimate Ŵ is estimated,
which minimizes the error e. In general, this learning
algorithm can converge much faster than a standard gra-
dient descent algorithm. The diagonal elements of the
covariance matrix σ = diag(P) provide a quality metric
for each weight wi in the form of an error bar. A small
value of σi means that the neural network is confident in
weight wi, large values indicate that the problem at hand
could not be learned yet, due to insufficient training or
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Figure 4. Development of the Kalman Filter gains K over
time during adaptation. The failure occurred at t = 1.5s.

inability to learn. As will be discussed later, this confi-
dence measure or validity index can play an important
role for V&V of the neural network. The well-known
and understood problem of numerical instability of the
Kalman filter, caused by calculation of the matrix in-
verse can be overcome, e.g., by using UD-factorization
[26], or the Bierman update [8].

5. ADVANCED TESTING AND MONITORING
TOOLS

Parameter Sensitivity Analysis

For the analysis of any controller’s behavior it is im-
portant to estimate its sensitivity with respect to input
perturbations. A badly designed controller might ampli-
fy the perturbations, which could lead to oscillations and
instability. The higher the robustness of the controller,
the less influence arises from input perturbations. It is
obvious that such a metric (i.e., ∂o

∂x for outputs o and in-
puts x) is also applicable to an adaptive control system.
For an adaptive component, like a neural network, the
estimation of the sensitivity is a “black box” method, i.e.,
no knowledge about the internal structure or parameters
is necessary.

During training of the network, the network parameters
are adjusted to minimize the training error. Depending
on the architecture of the adaptive controller, the net-
work can be pre-trained, i.e., the parameters are deter-
mined during the design phase (“system identification”),
or the parameters are changing while the system is in op-
eration (“online adaptation”). The parameter sensitivity
for a neural network model can be computed by ∂o

∂p for
each of the adjustable parameters p ∈ P. For a neu-
ral network, P is comprised of the network weights wi,
for the DCS network, it is the reference vectors of the
neurons ~wi.

More information can be obtained if each parameter of
the neural network is considered not as a scalar value,
but as a probability distribution. Then, the sensitivity

problem can be formulated statistically. The probability
of the output of the neural network is p(o|P,x) given
parameters P and inputs x. Assuming a Gaussian prob-
ability distribution, the parameter confidence can be ob-
tained as the variance σ2

P . In contrast to calculating the
network output confidence value, the parameter sensitiv-
ity does not marginalize over the weights, but over the
inputs.

A Sensitivity Metric for DCS Networks— Within the IFCS
Gen-I, the DCS networks are employed for online adap-
tation/learning. Their parameters (connection strength
Cij and reference vectors ~wi) are updated during system
operation. Since the parameters Cij do not contribute
to the network output during recall mode, we therefore
only measure the sensitivity of the reference vector of the
DCS network. Using the simulation data obtained from
the IFCS Gen-I simulator, the parameter sensitivity s
and its confidence σ2 after each learning epoch during a
flight scenario can be calculated. The sensitivity analy-
sis has been conducted on a N -dimension space, where
N is the number of dimensions of the input space.

Figure 5. Sensitivity analysis for DCS networks

Figure 5 shows two sensitivity snapshots at different
times of the simulation where the network has been
trained with 2-dimensional data. Each neuron is associ-
ated with a 2-dimensional sensitivity ellipse. At the be-
ginning of the simulation, the network is initialized with
two neurons whose reference vectors represent two ran-
domly selected training data points. The network con-
tinues learning and adjusts its own structure to adapt
to the data. Figure 5 shows the situation at t = 5.0s
(top) and t = 10.0s (bottom). At t = 5.0s, most neu-
rons exhibit relatively large sensitivity, while only a few
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(31%) neurons have small sensitivity values. However,
at t = 10.0s, when the network has well adapted to the
data, Figure 5 (bottom) clearly indicates that now most
(78%) neurons have small sensitivity values.

A Sensitivity Metric for Sigma-Pi Networks—For Sigma-Pi
network of the IFCS Gen-II controller, the parameter
sensitivity s and its confidence σ2 for the network pa-
rameters wi at each point in time during a flight scenario
are computed. Figure 6 shows two sensitivity snapshots
at various stages of the scenario. At the beginning of
the scenario, all parameters of the network are set to ze-
ro, giving (trivially) in the same sensitivity. At t = 1.5,
a failure is induced into the system. In order to com-
pensate for the failure, the network weights adapt. Fig-
ure 6(top) shows the situation at t = 5.0s. A consider-
able amount of adaptation and weight changes has taken
place already. However, the confidence for each of the 60
neurons is still relatively small, as indicated by the large
error bars. After approximately 20 seconds, the neural
network is fully trained. Figure 6(bottom) now shows
quite different values for the sensitivity. Whereas the
sensitivity for most of the neurons is really small now, a
few (here 7) neurons exhibit high sensitivity. Although
their σ2 is somewhat larger than that for the other neu-
rons, a clear distinction between the different groups can
be made.
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Figure 6. Parameter sensitivity and confidence at t = 5s
(top) and t = 20s (bottom).

Network Confidence

Validity Index—Following the definition of Validity Index
(VI) in RBF networks by Leonard et.al.[14], the valid-
ity index in DCS networks is defined as an estimated
confidence measure of a DCS output, given the current
input. The VI can be used to measure the accuracy of
the DCS network fitting and thus provide inferences for
future validation activities. Based on the primary rules
of DCS learning and properties of the network struc-
ture, the validity index in DCS can be computed using
the confidence intervals and variances. The computa-
tion of a validity index for a given input consists of two
steps: (1) compute the local error associated with each
neuron, and (2) estimate the standard error of the DCS
output for the given input using information from step
(1). Details can be found in [16], [15].

For the calculation of the validity index, the DCS train-
ing algorithm needs to be slightly modified, because all
necessary information is present at the final step of each
training cycle. In recall mode, the validity index is com-
puted based on the local errors and then associated with
every DCS output. The online learning of the DCS net-
work is simulated under a failure mode condition. Run-
ning at 20 Hz, the DCS network updates its learning
data buffer (of size 200) at every second and learns on
the up-to-date data set of size 200. The DCS network
was first started under nominal flight conditions with
200 data points. After that, every second, the DCS net-
work is set to recall mode and calculates the derivative
corrections for the freshly generated 20 data points, as
well as their validity index. Then the DCS network is set
back to the learning mode and updates the data buffer
to contain the new data points.

Figure 7 shows the experimental results of our simula-
tion on the failure mode condition. The top plot shows
the final form of the DCS network structure at the end of
the simulation. The 200 data points in the data buffer at
the end of the simulation are shown as crosses in the 3-
D space. The network structure is represented by circles
(as neurons) connected by lines as a topological map-
ping to the learning data. The bottom plot presents the
validity index, shown as error bars. The x-axis here rep-
resents the time frames. The failure occurs at t = 5.0s.
The validity index is computed for the data points that
are generated five seconds before and five seconds after
the failure occurs.

A trend revealed by the validity index in our simulations
is the increasingly larger error bars after the failure oc-
curs. At t = 6.0s, the network has learned these 20
failure data points generated from ∆t = 5.0 ∼ 6.0s. The
network performance became less stable. After that, the
error bars start shrinking while the DCS network adapts
to the new domain and accommodates the failure. After
the failure occurs, the change (increase/decrease) of the
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Figure 7. Online operation of DCS VI on failure mode simulation data.

validity index varies depending on the characteristics of
the failure as well as the accommodation performance of
the DCS network. In this sense, the validity index pro-
vides inferences for indicating how well and how fast the
DCS network accommodates the failure.

Confidence Tool— For the Gen-II architecture, the Con-
fidence Tool (CT) [9] produces a quality measure of the
neural network output. Our performance measure is the
probability density p(o|x, D) of the network output o
given inputs x, when the network has been trained with
training data D. Assuming a Gaussian distribution,the
standard deviation σ2 is used as a performance mea-
sure. A small σ2 (a narrow bell-shaped curve) means
that, with a high probability, the actual value is close to
the returned value. This indicates a good performance
of the network. A large σ2 corresponds to a shallow and
wide curve. Here, a large deviation is probable, indicat-
ing poor performance.

The confidence tool uses an algorithm, following the
derivation in [2] and has been implemented for Sigma-Pi
and multi-layer perceptron (MLP) networks in Matlab
and in C. Test flights with the Gen-II Sigma-Pi adaptive
controller and the Confidence Tool have been successful-
ly carried out in early 2006.

Figure 8 shows the results of a (Simulink) simulation ex-
periment. In the top panel, σ2 is shown over time. At
time t = 1.0s, the pilot issues a doublet command (fast
stick movement from neutral into positive, then nega-
tive and back to neutral position; Fig. 8(lower panel)).
Shortly afterwards (t = 1.5s), one control surface of the

Figure 8. Confidence value σ2 over time (top) and pilot commands for
roll axis (bottom). A failure has occurred at t = 1.5s.

aircraft (stabilizer) gets stuck at a fixed angle (“the fail-
ure”). Because the system dynamics and the model be-
havior do not match any more, the neural network has
to produce an augmentation control signal to compen-
sate for this deviation. The σ2 of the network output
increases substantially, indicating a large uncertainty in
the network output. Due to the online training of the
network, this uncertainty decreases very quickly.

A second and third pilot command (identical to the first
one) is executed at t = 11s, and t = 17s, respective-
ly. During that time, the network’s confidence is still
reduced, but much less than before. This is a clear in-
dication that the network has successfully adapted to
handle this failure situation.

6. CONCLUSIONS

Adaptive control systems can increase safety and per-
formance of an aircraft as it can adapt to accommodate
slow degradation and catastrophic failures (e.g., a stuck
control surface). Neural networks with suitable machine
learning algorithms are often used as the core compo-
nents of an adaptive controller. Since such systems are
highly safety-critical, rigorous methods for V&V and cer-
tification are needed. However, the nonlinearity of an
adaptive controller and the iterative nature of the learn-
ing algorithm makes traditional rigorous (linear) analysis
techniques difficult and useless.

In this paper, we have discussed major issues that arise
during the analysis and V&V of an adaptive controller.
We have presented several analysis techniques and tools
that dynamically monitor the behavior and performance
of the network. These tools are not only useful during
V&V, but also have been incorporated into the actual
flight software to monitor the online network’s behavior
in real time. When put in the right perspective with
respect to traditional control and state estimation algo-
rithms, our monitoring tools can effectively analyze neu-
ral network based adaptive control systems and provide
help for system certification consideration.
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